Deepwater Horizon Crude Oil and its Implications on the Atlantic Stingray, Hypanus sabinus

By: Casey Dresbach, SRC Intern

Since WWII, the extraction of oil has rapidly revolutionized the way we live. The twentieth century is actually deemed the “century of oil.” The world’s dependency on oil is primarily on Petroleum, also known as crude oil. Crude oil is a complex and naturally occurring mixture of petroleum, which is formed by breaking down large molecules of oils, waxes, and fats  (Penn State College of Earth and Mineral Sciences). This is not a modern process and has actually been around for hundreds and millions of years. When marine organisms die, they sink to the bottom of the ocean and are buried in clay, silt and sand. When physical factors come into play – pressure and heat – they facilitate transformation to crude oil. It is stored in impervious rock beneath the earth’s surface. The fuel, which we use today to serve our industrial needs, can be extracted by drilling through this rock. However, crude oil contains a variety of lethal chemical constituents some of which include benzene, hydrocarbons, toluene, and heavy metals (Cave & Kajiura, 2018). Unnaturally high levels of exposure to these chemicals have shown to damage sensory systems in teleost fish, bony fish. Such exposure is due to oil spills, when extraction activities fail to excavate without seepage. The flammable nature of crude oil is subject to possible explosion and fire with faulty production processes.  These unnatural spills result in high levels of liquid petroleum releases into the environment.

Figure 1. World distribution of petroleum and oil resources.). (Penn State College of Earth and Mineral Sciences)

Most of the world’s petroleum is found in the Middle East (See Figure 1). Yet many countries, including the US, wish to extract oil domestically. Several nations seek out ways in which they can attain the fuel, some of which include large-scale rigs in the middle of the ocean. Deepwater Horizon operated as a floating drilling rig, which functioned to extract oil from deep below the water’s surface. However, on April 20th, 2010 one of the largest spills in the history of marine oil drill operations occurred: The Deepwater Horizon (DWH) oil spill in the Gulf of Mexico on the BP-operated Macondo Prospect. 4 million barrels of oil flowed from the damaged Macondo well over an 87-day period, before it was finally capped on July 15, 2010 (EPA, 2017). 11 workers died and hundreds and thousands of organisms as well as their ecosystems continue to suffer the implications of the explosion.

Figure 2. Five years after Deepwater Horizon Oil Spill.) (WWO, 2015).

Spilled oil can harm all kinds organisms, due to the chemical makeup of its poisonous constituents mentioned earlier. In a study conducted by Eloise J. Cave and Stephen M. Kajiura, the impact of crude oil exposure upon sensory function was explored in an organism whose sensory organs are crucial to its existence as a predator (Cave and Kajiura 2018). The Atlantic Stingray, Hypanus sabinus and specifically their impaired olfactory functions as a result of the DWH oil spill were studied in comparison to healthy stingrays. Like all elasmobranchs, these Atlantic Stingrays are renowned for their extraordinary sensory organs. They produce a mucus that exposes the chemosensory cells to the seawater, which allows the stingray to utilize the olfactory system effectively.  It also serves as a barrier to provide a protective surface, similar to the jelly-filled pores on a shark’s Ampullae of Lorenzini. The mucus allows for chemical constituents to seep through to the olfactory system, which elicit cues for food availability for instance. If unimpaired, the system enables awareness as predators to both other marine organisms as well as threatening environmental conditions.

Figure 3. Healthy Atlantic Stingray, Hypanus sabinus.). (Snyder, 2018)

Atlantic stingrays were collected from the Indian River Lagoon in Florida. They were placed in a lab setting – in a holding tank – and tested to determine the toxicological effects of crude oil. The experimental group were exposed to a “high–energy water accommodated fraction (HEWAF) oil solution.” The control experiments were tested under identical conditions in the tank but without the added oil solution. After 48 hours of incubation time, both groups of the population set were probed with a series of amino acids to test the functionality of the sensory organs. This exposure evaluated the transport of what is called “odorants” between seawater environment and the olfactory system. Using three methods of comparison 1) response magnitude, 2) duration, and 3) onset researchers analyzed among stingrays exposed to oil solution with stingrays that were not. Researchers found that when the experimental group was exposed to amino acids, the olfactory organ responses were significantly delayed. Results showed a slower response to the stimuli of amino acids to the stingrays, which simulated those living under unfavorable conditions post DWH spill. They also noticed an increase in mucus production, which could have led to an increase in the amount of chemicals diffused through and thus, heightened impairment.

Even though the DWH oil spill dates back to nearly 8 years ago, marine ecosystems are still enduring the implications of the accident. The study discussed above was the first to employ an “electrophysiological assay to demonstrate crude oil impairment of the olfactory system in a marine fish.” Essentially, showing that elasmobranchs among other marine organisms impacted by an oil spill continually experience decreased olfactory functioning. This not only leads to further predation but also to detriments on the overall fitness of the animal leading to premature death. More research needs to be done with respect to oil spills and their implications because there is potential for certain species to die off leading to a domino effect through lower trophic levels. Oil is an important source of energy to the billions of people on the planet. Yet oil operations must be better maintained and scrutinized to ensure mass spills like the BP oil spill do not occur again. More research needs to be done to regard to the consequences marine organisms are experiencing from the oil spills. 

Work Cited:

Cave, E. J., & Kajiura, S. M. (2018). Effect of Deepwater Horizon Crude Oil Water Accommodated Fraction on Olfactory Function in the Atlantic Stingray, Hypanus sabinus. Scientific Reports .

EPA. (2017). Deepwater Horizon – BP Horizon Oil Spill. Retrieved from Environmental Protection Agency (EPA):

Penn State College of Earth and Mineral Sciences. (n.d.). Petroleum . Retrieved from

Snyder, D. (2018). Atlantic Stingray. WWO. (2015, April 16). Five Years After Deepwater Horizon Spill. Retrieved from World Wild Life WWO.

Long-term effects on long-lived ecosystems: oil spills and deep-water corals

By: Molly Rickles, SRC Intern

The Deepwater Horizon Oil Spill occurred in 2010 in the Gulf of Mexico and was one of the largest oil spills ever recorded. During the 85 days before the spill was capped, over 4.9 million barrels of oil were released. The Deepwater Horizon Oil Spill was unique because most spills occur at the surface, but this particular oil spill occurred at 1500 meter below sea level. The spill occurred at the Macondo Prospect well, which is located about 41 miles off the southeast coast of Louisiana. To clean up the oil, 7 million liters of dispersant was applied at the surface. This chemical compound was used to absorb the oil and stop it’s spreading. However, dispersant is known for being extremely damaging to marine life. This mixture of oil and dispersant was especially damaging to corals. In addition, dispersant can stay in the water for up to four years, making it extremely long lived (Frometa et al. 2017). While the chemical is efficient at cleaning oil on the surface of the water, it is very detrimental to the marine environment as a whole.

In the Gulf of Mexico, there are over 258 species of corals, making it a very diverse marine environment (Girard & Fisher, 2018). Corals are slow growing and long lived, which makes them extremely susceptible to anthropogenic stresses. This was a major concern following the spill, since there was very little baseline information on the deep-water ecosystems in the Gulf of Mexico. These deep-water reef tracts are located at depths around 1500 meters and host a variety of species, including octocorals, sponges and hermatypic corals (Silva, Etnoyer, Macdonald, 2016). The largest reef tract that was located near the oil spill is the Pinnacle Track Reef. This reef has remnants of shallow water reef that formed before sea level rise, and now hosts a variety of deep-water organisms (Frometa et al. 2017).

Figure 1: This image shows the changes in an impacted coral colony between 2011 and 2017. Healthy coral is shown in green, unhealthy coral is shown in red, colonized by hydroids is shown in yellow and purple shows unclassified coral. Girard, F., & Fisher, C. R. (2018). Long-term impact of the Deepwater Horizon oil spill on deep-sea corals detected after seven years of monitoring. Biological Conservation,225, 117-127. doi:10.1016/j.biocon.2018.06.028

Several studies began looking at deep-water reef tracks after the oil spill. There were a few studies that already had images of the reef track prior to the spill, so this was used as baseline data. After the spill, researchers took images of the reef at varying intervals for up to seven years following the spill. After the initial dispersal of oil, the reef was covered in a mixture of oil and dispersant. Most of the oil that was released from the well remained at depth, which created a plume that existed for months. In addition, oil-contaminated marine snow fell onto the reefs from the surface, which caused additional damage (Girard & Fisher, 2018). It was found that the most common type of injury was the accumulation of biofilm on the corals (Silva, Etnover, Macdonald, 2016). Other injuries included bare skeletons, broken or missing branches, overgrowth of hydroids and necrosis. In addition, taller corals displayed higher rates of injuries. The initial level of impact from the oil spill caused less healthy branches, and breakage occurred very frequently at impacted sites (Girard & Fisher, 2018). Another interesting finding was that the initial level of total visible impact was correlated to recovery time, meaning that reefs that were highly impacted by the initial oil spill were less likely to fully recover (Girard & Fisher, 2018).

While almost all deep-water reefs showed damaged from the spill, there were a few located far enough away in the Gulf of Mexico that were used as reference sites. It was determined that these reference sites were significantly less damaged than affected sites, meaning that the oil spill caused injury and damage to the deep-water reefs. These effects were magnified by the occurrence of Tropical Storm Bonnie, which occurred two months following the spill. It has been hypothesized that the tropical storm accelerated the mixing of water and oil, leading to more oil being dispersed along deep-water reef tracks (Silva et al. 2016).

Figure 2: This graph shows injury level varying by years for two reef tracks. Before the spill, the injury level was commonly zero for most of the observed sites. After 2011, the injury level is significantly higher, and the number of reefs with no injuries declines drastically. Silva, M., Etnoyer, P. J., & Macdonald, I. R. (2016). Coral injuries observed at Mesophotic Reefs after the Deepwater Horizon oil discharge. Deep Sea Research Part II: Topical Studies in Oceanography,129, 96-107. doi:10.1016/j.dsr2.2015.05.013

The Deepwater Horizon Oil Spill was an extremely damaging event to the Gulf of Mexico, and its effects are still ongoing. While many scientists focused on the visible effects of the spill such as the impact on birds, marine mammals and beaches, the majority of the effects occurred in deep-water. Since the deep-water reef tracts are the source of much of the Gulf of Mexico’s diversity, it is extremely important to study the effects of the spill on these areas. Since there was very little baseline data on these reefs before the spill, it is necessary to establish a baseline data set of these reef tracts so damage can be more easily assessed in the future.

Work Cited:

Frometa, J., Delorenzo, M. E., Pisarski, E. C., & Etnoyer, P. J. (2017). Toxicity of oil and dispersant on the deep water gorgonian octocoral Swiftia exserta, with implications for the effects of the Deepwater Horizon oil spill. Marine Pollution Bulletin,122(1-2), 91-99. doi:10.1016/j.marpolbul.2017.06.009

Girard, F., & Fisher, C. R. (2018). Long-term impact of the Deepwater Horizon oil spill on deep-sea corals detected after seven years of monitoring. Biological Conservation,225, 117-127. doi:10.1016/j.biocon.2018.06.028

Silva, M., Etnoyer, P. J., & Macdonald, I. R. (2016). Coral injuries observed at Mesophotic Reefs after the Deepwater Horizon oil discharge. Deep Sea Research Part II: Topical Studies in Oceanography,129, 96-107. doi:10.1016/j.dsr2.2015.05.013

The Lasting Legacy of the Deepwater Horizon Oil Spill

By Delaney Reynolds, SRC intern

This map of how far the oil reached on the surface level of the Gulf of Mexico exhibits that the coasts of Texas, Louisiana, Mississippi, Alabama, and Florida were impacted.
(Source: Huettel, M., Overholt, W. A., Kostka, J. E., Hagan, C., Kaba, J., Wells, B., & Dudley, S. (2017, December 22). Degradation of Deepwater Horizon oil buried in a Florida beach influenced by tidal pumping. Retrieved March 13, 2018, from pii/S0025326X1730903)

Mankind’s use of fossil fuels as an energy source can place our natural environment at grave risk, and nowhere is that more acute than in the Gulf of Mexico. The environmental threats the Gulf region faces from petroleum production and exploration are not just those that appear in the media immediately following an oil spill or similar catastrophe, but are events that leave a lasting, often unseen legacy that stands to pollute and destroy our natural environment and the creatures that live in it for generations.

The Deepwater Horizon, British Petroleum (BP), oil spill of 2010 was the largest marine oil spill in history and polluted the Gulf for 87 days by pouring an estimated 60,000 barrels per day at its peak, and over 3.19 million barrels in total, of petroleum into the Gulf’s environment (Pallardy). The oil’s effluence rapidly spread to over 1,000 miles on the coastlines of Texas, Louisiana, Mississippi, Alabama, and Florida and while the efforts to clean up beaches and the spill itself have had some success, remnants of oil remain buried in sediments and continue to dramatically disrupt life beneath the surface (Frost).

Florida State University researchers discovered that within a week of burial, two thirds of the oil that washed ashore was retained in coastal sediments and caused a decrease in biodiversity by over 50% (Huettel). Bacterial abundance increased drastically in heavily oiled sands as the bacteria thrived off the oil and, thus, caused bacteria blooms, lowering overall oxygen content. This decrease in oxygen content, in turn, caused the decrease of biodiversity as aerobic organisms either perished or migrated to areas with a higher oxygen content. However, within three months, a resurgence in microorganisms normalized biodiversity as they restocked the coastal waters with the oxygen that aerobic organisms’ survival necessitates. Not only does this exemplify the ability of aquatic ecosystems to replenish themselves after being exposed to stressors, but it also supplies us with knowledge of the types of microorganisms that could be utilized to clean up future spills, as well as any environmental impacts they may cause to other organisms.

One example of a lasting major environmental impact of the spill to other species from exposure to crude oil is pelagic fish cardiac and swim performance impairment which, in turn, has been found to lead to the inability of embryonic development. Mahi-mahi embryos obtained from the University of Miami Experimental Hatchery and yellow fin tuna embryos obtained from the Inter-American Tropical Tuna Commission’s Achotines Laboratory were collected as experimental specimen and exposed to different dilutions of crude oil collected from the Deepwater Horizon Oil Spill site, as well as varying levels of ultraviolet radiation (UV) exposure, for 96 hours in a pelagic embryo-larval exposure chamber (PELEC). Mahi-mahi specimens exposed to higher levels of UV radiation were found to have a nine-fold increase in toxicity from Deepwater Horizon crude oil increasing stress levels within the fish. Yellow fin tuna survival rates were found to be significantly higher in the PELEC system than in the agitated system, meaning their survival rate decreased by a measure of 20% when exposed to crude oil and UV radiation (Steiglitz). Events such as the Deepwater Horizon oil spill can challenge pelagic fish, especially embryos and their ability to develop correctly and survive. Thus, this research provides ways in which we can begin to predict the extreme environmental conditions species would face in future oil spills, as well as examine how remnants of oil preserved in sediments may affect spawning grounds among certain species.

Kemp’s Ridley sea turtle (Lepidochelys kempii) covered in crude oil
(Source: 20150504-noaa-announces-new-deepwater-horizon-oil-spill-searchable-database-web-tool.html).

Another example of the diverse and devastating impact that an oil spill can have can be found in northwest Florida, where the loggerhead turtle (Caretta caretta) has been found to have varying offspring densities in nests since the Deepwater Horizon spill in 2010. Using a before-after, control-impact statistical model, researchers from the US Fish and Wildlife Service and Florida Fish and Wildlife Conservation Commission examined the historical records of loggerhead turtle nest densities and compared them to nest densities after 2010. They found that loggerhead nest densities in 2010 were reduced by 43.7% following the Deepwater Horizon oil spill and approximately 251 nests were decimated by crude oil and cleanup efforts, having a long-term impact on population sizes (Lauritsen). The drastic decline is due in part to the oil that entered “nearshore areas and washed onto beaches along the northern Gulf of Mexico shoreline during the summer of 2010, requiring extensive, disruptive activities to remove contaminated beach sand, oil, and debris” (Lauritsen). Nesting densities increased to normal rates in 2011 and 2012 suggesting some loggerhead sea turtles avoided mortality from oil saturation. Researchers later estimated that at least 65,000 sea turtles perished in 2010, likely exacerbated by oil contamination (Pallardy).

There are few places on earth as lovely and naturally beautiful as the Gulf of Mexico. From its sandy white beaches, coastal marshes and abundant estuaries, to its serene salt waters, the Gulf region is a critical environment that humans and countless animal species rely upon for food, shelter, and recreation. Sadly, since 2010 when the Deepwater Horizon spill event took place, there have been at least 234 additional oil spills here in the United States as of December 2017 (ITOPF). And while the immediate impact of a spill is unacceptable, the lasting legacy such as sediments that retain oil particles long after a spill occurs and its impact on range of species across the food chain from microorganisms to sea turtles to mahi-mahi and yellow fin tuna should concern all of us. As populations continue to grow, so too will energy needs and this, along with the constant threat from yet another oil spill and the long-term implications its pollution has on our environment, makes managing these risks, while also embracing and evolving to sustainable energy solutions, critical to nature and humans alike.

Works Cited

Frost, E. (2018, February 28). Gulf Oil Spill. Retrieved March 15, 2018, from

Huettel, M., Overholt, W. A., Kostka, J. E., Hagan, C., Kaba, J., Wells, B., & Dudley, S. (2017, December 22). Degradation of Deepwater Horizon oil buried in a Florida beach influenced by tidal pumping. Retrieved March 13, 2018, from

ITOPF. (2017, December). Oil Tanker Spill Statistics 2017. Retrieved March 15, 2018, from

Lauritsen, A. M., Dixon, P. M., Cacela, D., Brost, B., Hardy, R., MacPherson, S. L., . . . Witherington, B. (2017, January 31). Impact of the Deepwater Horizon Oil Spill on Loggerhead Turtle Caretta caretta Nest Densities in Northwest Florida. Retrieved March 13, 2018, from

Pallardy, R. (2017, December 15). Deepwater Horizon oil spill of 2010. Retrieved March 15, 2018, from

Stieglitz, J. D., Mager, E. M., Hoenig, R. H., Alloy, M., Esbaugh, A. J., Bodinier, C., . . . Grosell, M. (2016, July 22). A novel system for embryo-larval toxicity testing of pelagic fish: Applications for impact assessment of Deepwater Horizon crude oil. Retrieved March 13, 2018, from Stieglitz et al.pdf&p=DevEx,5063.1

The Mess Left by the Gulf Oil Spill

By Jessica Wingar, RJD Intern

Oil spills are notoriously awful environmental events. The worst one to ever occur was on April 2, 2010 in the Gulf of Mexico. One of the Deepwater Horizon oil rigs exploded, killing eleven people, and causing copious gallons of oil to pour into the ocean. After eighty seven days, the rig was capped off, but the damage was already done. The environmental consequences of this spill are very wide ranging. The estimated amount of oil that spilled into the ocean is about 4.9 million barrels and that is probably a low estimate. With this amount of oil and because of ocean currents, this oil spread all around the Gulf of Mexico and into the entire water column. Of course, the animals living in this oil were and still are greatly affected by this spill, and future generations will continue to be effected. From stranded dolphins to oil covered turtles, the list goes on (Gulf Oil Spill).


An immediate effect of the oil spill: A scientist saving an oil covered turtle.

In addition, to the visible effects, there are many effects of the oil spill that occurred under the surface. Oil contains petroleum hydrocarbons, which are pollutants meaning that they are harmful to organisms that ingest them. These hydrocarbons can lead to the suppression of the immune system, which increases the likelihood of disease in populations. Therefore, increasing the likelihood of death in these organisms, and thus decreasing the populations of many organisms. The effects of these hydrocarbons also lead to a decrease in ability to respond to large changes in environmental factors (Whitehead, A, 2014).  However, there are more than just the effects on the present populations of marine organisms. There are many consequences of the spill that will be felt for generations to come.

The effects of oil on the development of fish are of high concern. It is of high concern because the oil from the rig has gone throughout the water column and to the surface. Many fish embryos develop in the surface water. Before the spill, the effect of a lot of crude oil was not an issue, but after this huge spill the worry of developmental problems has increased (Incardona, J.P., 2014).

Many studies have been done since the spill that observe the changes in fish development. One study conducted shortly after the spill looked at developing killifish embryos and adult organisms in order to see how they reacted to the oil. These fish were taken from marshy areas that had been directly affected by the fallout of the deepwater horizon spill. PCB is one of the main toxins in crude oil and these embryos exhibited activation of PCB responsive genes. Therefore, leading to decreased hatching, development, and survival of killifish. These effects are major concerns because killifish are the most abundant vertebrates in the Gulf of Mexico marshy environments (Whitehead, A. et al, 2012). In a study done using oil taken from the slick, amberjack, Bluefin tuna, and yellowfin tuna were raised in a lab and their heart development was observed. As the concentration of oil increased, heart rate decreased and arrhythmia was also observed. In addition to the problems in heart development, there were also physical developmental problems. Fins appeared to be reduced in size and there was decreased development of finfolds (Incardona, J.P., 2014). Another study observing mahi-mahi also showed an increase in heart rate as percentage of oil increased. These important pelagic species also had swimming challenges as they grew.

Picture2 (1)

Affects on the caudal finfolds

This same study looked at how the swim speed of mahi-mahi was affected by the Deepwater Horizon oil spill. The mahi were exposed to oil as embryos for 24 and 48 hour periods. Both time exposures showed that when these fish grew to juveniles they experienced a decrease in swim speed that they could maintain for long periods of time. Since it took about 25 days for these decreases to be seen, this study also found that there must be some delay in development as well caused by the polycyclic aromatic hydrocarbons, toxins, in the crude oil from the Deepwater Horizon Spill (Mager, E, 2014). Research is still continuing in order to find out more of the long term effects of this devastating oil spill. This research is increasingly important seeing as in years to come, these effects could be more pronounced in the ocean. In addition, if this research is done, then further work can be done to conserve the organisms that currently live in the Gulf of Mexico.


Gulf Oil Spill. (n.d.). Retrieved October 27, 2014, from

Incardona, J.P., Gardner, L.D., Linbo, T.L., Brown, T.L., Esbaugh, A.J., Mager, E.M., Stieglitz, J.D., French, B.L., Labenia, J.S., Laetz, C.A., Tagal, M, Sloan, C.A., Elizur, A, Benetti, D.D., Grosell, M, Block, B.A., and Nathaniel L. Scholz.  (2014). Deepwater Horizon crude oil impacts the developing hearts of large predatory pelagic fish. Proceedings of the National Academy of Sciences, 111(15): 7053-7061.

Mager, E.M., Esbaugh, A.J., Stieglitz, J.D., Hoenig, R, Bodinier, C, Incardona, J.P., Scholz, N.L., Benetti, D.D., and Martin Grosell. (2014). Acute Embryonic or Juvenile Exposure to Deepwater Horizon Crude Oil Impairs the Swimming Performance of Mahi-Mahi (Coryphaena hippurus). Environmental Science and Technology, 48(12): 7053-7061.

Whitehead, A. (2013). Interactions between Oil-Spill Pollutants and Natural Stressors Can Compound Ecotoxicological Effects. Integrative and Comparative Biology, 53 (4): 635-647.

Whitehead, A, Dubansky, B, Bodinier, C, Garcia, T.I., Miles, S, Pilley, C, Raghunathan, V, Roach, J.L., Walker, N, Walter, R.B., Rice, C.D., and Fernando Galvez. (2012). Genomic and physiological footprint of the Deepwater Horizon oil spill on resident marsh fishes. Proceedings of the National Academy of Sciences, 109 (50): 20298-20302.


Seismic airguns: A threat to our oceans

by Zackery Good, RJD Intern

As the third anniversary of the Deepwater Horizon oil spill approaches on April 20th it is important to look at the lessons learned as well as the current state of offshore drilling.  The Deepwater Horizon spill released over four million barrels of oil into the Gulf of Mexico before finally being capped after 84 days (Camilli et al. 2010, Crone and Tolstoy 2010) .

Figure 1.  NASA satellite image of oil slick from Deepwater Horizon spill May 24, 2010 (Wikimedia Commons)

Figure 1. NASA satellite image of oil slick from Deepwater Horizon spill May 24, 2010 (Wikimedia Commons)

Read more

Conservation research: Recovery of salt marshes after the BP oil spill

by Evan Byrnes, RJD intern

Oil spill damage has been a hot area of interest, especially since the BP Deepwater Horizon Spill in 2010. This is because oil spills can affect flora and fauna for generations, especially in coastal wetlands where decomposition is slow due to the low energy and anoxic environment. Coastal wetlands are very important habitats. They are commonly used for reproduction by various organisms, provide protection from shoreline erosion, regulate gasses and nutrients, support fishery and ecotourism industries, and much more.

Figure 1 from McCall and Pennings 2012, showing “typical conditions at oiled sites”

Coastal wetlands are a predominant habitat in the Gulf of Mexico, yet over 3000 production platforms are active in the Gulf. This brings about major concern for potential damage to these crucial habitats. Therefore many laboratory studies have been completed studying the damage done by oil spills. However, laboratory studies have not proved pertinent because they cannot duplicate the effect of natural wave and tidal action and normally have short durations. For these reasons, McCall and Pennings took it upon themselves to conduct a field study following the BP Deepwater Horizon Spill studying the effect with natural conditions and over a longer period of time.

Read more